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Abstract
We estimate the energy fluence (energy per unit area) at

the focal plane of a beam undergoing neutralized drift
compression and neutralized solenoidal final focus, as is
being carried out in the Neutralized Drift Compression
Experiment (NDCX) at LBNL. In these experiments, in
order to reach high beam intensity, the beam is
compressed longitudinally by ramping the beam velocity
(i.e. introducing a velocity tilt) over the course of the
pulse, and the beam is transversely focused in a high field
solenoid just before the target. To remove the effects of
space charge, the beam drifts in a plasma. The tilt
introduces chromatic aberrations, with different slices of
the original beam having different radii at the focal plane.
The fluence can be calculated by summing the
contribution from the various slices. We develop analytic
formulae for the energy fluence for beams that have
current profiles that are initially constant in time.  We
compare with envelope and particle-in-cell calculations.
The expressions derived are useful for predicting how the
fluence scales with accelerator and beam parameters..

INTRODUCTION
Recently, experiments have been carried out on the

Neutralized Drift Compression Experiment (NDCX) at
Lawrence Berkeley National Laboratory to investigate the
use of injected plasma into a final drift compression line,
final focus magnet, and target chamber to eliminate the
effects of space charge [1], which, in turn, allows for
maximum longitudinal compression and transverse final
focusing.  These beams have short final pulse duration Δtf
and small focal spot radius rspot (defined at 21/2 times the
rms radius, when averaged over all beam particles).
Because of the possibility of creating high beam
intensities in a short pulse, the beams are being used to
generate so called warm dense matter (WDM) conditions
[2,3].  The main figures of merit for experiments are the
beam fluence (beam energy per unit area integrated over
the pulse) E and Δtf, since the attainable temperature is
determined by E as long as Δtf is much shorter than the
hydrodynamic timescale for expansion. In this paper, we
provide an analytic estimation of E which can be useful
for designing experiments that maximize E.

In the following sections, we first describe a simplified
model for a final drift and focus section. We then outline
the derivation of the estimate and.compare with more
detailed numerical calculations (envelope and particle in
cell), and finally we describe how we have used these
three approaches to help design experiments for NDCX at
LBNL.

MODEL FOR ANALYTIC ESTIMATE
We assume that after the beam is accelerated to final

velocity v0, and energy qV0 with charge state q,  the beam
exits the accelerator with 4 rms unnormalized transverse
emittance ε. The beam passes through an induction
bunching module gap that increases the velocity of the tail
to vt and decreases the velocity of the head to vh. The "tilt"
is defined as Δ ≡ (vt-vh)/v0. The beam drifts a distance L to
the target, longitudinally compressing as it propagates,
due to the tilt.  A distance f from the target, when the
beam has radius r0 the beam enters a solenoid of strength
Bsol and length lmag, and exits the solenoid with the
envelope converging angle r1' and radius r1, setting the
beam onto a final trajectory that focuses onto the target
with radius rspot. . (Throughout this paper, envelope radii
r, with or without subscripts, are defined as 21/2 times the
rms radius). A plasma is assumed to fill the drift section,
the final solenoid and the target chamber (that includes
the distance between the target and the solenoid).  We
further assume that the plasma density sufficiently
exceeds the beam density so that the space charge forces
within the beam are negligible. This implies that each
slice of the beam retains the velocity v ≡  v0(1+δ) it
obtained in the bunching gap,  and so each slice will have
a slightly different focal length, and hence slightly larger
focal spot at the target than the focal spot of the
longitudinal center of the beam (δ=0). Although formal
analytic solutions to the kinetic equations describing drift
compression have been obtained [4], exact closed form-
scaling relations for the fluence have not, as of yet, been
derived.

ANALYTIC ESTIMATE OF FLUENCE E
The envelope equation for the beam radius r for a beam

without space charge may be written: 
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Here kc = qBsol/(mv), and prime is derivative with respect
to longitudinal position z . Within the solenoid, the
emitttance term is small relarive to the focusing term,  so
we may solve  the  envelope  equat ion:

€ 

r1 = r0 cos kcz
2

+
2r0′
kc

sin kcz
2

 .   We assume that  r0' =0, as

the change in r' going through the solenoid is expected to
be large.  The condition that the beam comes to a focus at
a distance after the magnet f-lmag is:                                     
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may be expressed as: 
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ηmag = lmag/f, and θ =kclmag/2.  The contribution to the spot



size from the emittance is thus:  
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Here F1(θ) =1/(cosθ+θsinθ)2. For "off-momentum" slices
the beam spot will be larger by the amount 
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drspot = ′ r 1df
where the focal length is given by: 
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f = r1 / ′ r 1  so the change
in focal length for off-momentum particles is:
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drspot chromatic = (θ /sinθ)r0δ . So the spot radius from both

emittance and chromatic aberrations can be written:
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Here F2(θ)=(θ /sinθ)2. For the "thin lens" approximation
θ <<1, F1(θ)≈1 and F2(θ)≈1 , and the "thick lens"
approximation θ =π /2, F1(θ)=4/π2 and F 2(θ)=π2/ 4 . A
more direct derivation of rspot(δ) may be obtained by
expanding the envelope equation in δ and integrating.

To calculate the central fluence E(r=0), we must
integrate the intensity from each slice.  Since the phase
space at the focus is rotated by ~π /2 relative to the
beginning of the soleonid, we expect (and assume) the
spatial distribution for each slice to be close to a gaussian
distribution in radius with an rms radius equal to rspot/2

1/2

(for each δ). This amounts to adding many different
gaussians with different widths, yielding a non-gaussian
distribution. The number of particles per unit area n(r) at
radius r at the focus integrated over the pulse is thus:
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Here lb is the length of the bunch before compression, and
ds is an element of beam along the beam length
corresponding to an element of velocity tilt dδ. Note that
we are assuming that the velocity tilt imposed on the
beam in the induction gap is linear, so that δ/Δ= s/lb. By
assumption:
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Here σ = rspot/2
1/2, and N0 is the total number of particles

in the bunch, so that 
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here is assumed to be constant current before bunch
compression. The integral for n(r) may be expressed:
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For r =0, the integral may be carried out:
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In the limit, that Δ  approaches zero, the central
integrated density is just that of an uncompressed
emittance limited beam n(r=0,Δ=0)=2N0r0

2/[πf 2ε2F1(θ)].
The fluence E is given by E ≈ qV0 n(r=0).  In figure 1, we
have plotted the fluence normalized to the fluence at Δ=0,
as a function of the argument of the inverse tangent to
show potential gains if the chromatic aberrations were

corrected (as in a time dependent correction concept now
under study for NDCX). For the NDCX experiments
listed in Table 1 (cases b and c), the argument has a range
of 4 to 16, with corresponding values of
n(r=0)/n(r=0,Δ=0) ranging 0.31 to 0.092, respectively,
indicating potential fluence increases of  3 to 11,
respectively if chromatic aberrations are corrected. 

   

        
Figure 1. Fluence normalized to Δ=0 fluence as function
of quantity r0

2Δ F2(θ)1/2/[2εfF1(θ)1/2].
We may also estimate the spot radius of the integrated

pulse. Integrating over all slices,  the radius of the
integrated pulse is given by:

€ 

rspot
2 =

ε2 f 2

r0
2 F1 θ( )+ r0

2η2Δ2F2 θ( )                                   (2)

Here 
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, where

I(s) is the current as a function of longitudinal position s
along the beam before drift compression, with s=0
corresponding to the center of the beam. For
I(s)=constant, then η  = 1/121/2≈0.29. (For a parabolic
pulse η  = 1/201/2≈0.22). The quantity rspot is minimized
when r0 is such that the two terms in the equation for rspot

2

are equal, namely: r0_opt
2= ε f [ F1(θ)F2(θ)]1/2/(ηΔ) for

which rspot_opt
2=2εfηΔ[F1(θ)F2(θ)]1/2. Note that, although

there is an optimum r0_opt that minimizes the rms radius of
the integrated spot rspot_opt[5], increasing r0 increases E
monotonically, only saturating as the inverse tangent in
eq. 2 approaches π/2. However, the area over which E is
large decreases as r0 increases beyond r0_opt.

There are a number of assumptions that are built into
equation (1). One assumption is that r0 is constant for all
δ.  When we rederive equation 1 replacing r0 with r0 +
αLδ, where α  is a constant (as can be expected from
aberations from the induction bunching module), we find
that the integral for n(r=0) is unchanged, to lowest order
in the parameter αLδ/r0 as long as αLδ/r0 <<1, with finite
correction only in second order.  Another assumption in
the model, is that r0' is small, which usually is true relative
to r1', but its impact on rspot has not yet been quantified
analytically.

COMPARISONS WITH NUMERICAL
RESULTS

We have compared our analytic model with predictions
of an envelope model and a particle in cell code LSP. The
envelope model makes the same assumption as the



Figure 2. Calcuation of E using an envelope/slice model. Each color represents the trajectory of a different slice with
different d. See text for further details.
Table 1. Comparison of E calculated using envelope model, LSP, and Eq. (1)

Bsol

(T)
Initial
pulse
t(ns)

qV0

(keV)
r
z=284
(mm)

r'
z=284
(mm)

I
at
focus
(A)

Δt_f
(ns)

L
(cm)

Δ  f
(cm)

  r_0
(mm)

E
en-
velope
(J/cm2)

E
LSP
(J/cm2)

E
Eq. (1)
(J/cm2)

a 0 200 300 21.5 -23.80 3.08 1.69 144 0.17 0.06
b 8 282 300 9.55 -9.82 4.01 1.83 144 0.24 23 19.2 0.39 0.30 0.59
c 8 400 300 14.40 -13.70 3.23 3.22 288 0.17 23 11.8 0.82 0.69 0.94

analytic model at the focal spot. Namely, take the spot
radius for each slice as calculated by a numerical
integration  of the envelope equations, and assume a
gaussian intensity profile for the slice at the target plane,
summing the intensities over slices numerically. The
advantage of the envelope model is that the finite r'
induced by the induction bunching module can be used as
an initial condition at the beginning of the drift; the finite
region where the beam is non-neutral can be accounted
for; and so there are no assumptions about r0 and r0'.

The most detailed and accurate description of the drift
compression and final focus is obtained using the LSP
code [6,7].  LSP is a particle in cell code that includes
fringe fields of the magnets and bunching module and
models for calculating the plasma density and flow. The
calculation includes first principle simulations of the
beam through accelerator, drift, final focus, and chamber.

In figure 2, we plot an example of an envelope
calculation using parameters from the NDCX experiment.
The beam is 300 kV, 27 mA, singly charged potassium.
The envelope calculation is initialized at z = 284 cm, at
the exit of the induction bunching module gap.  The
envelope slices are calculated assuming full space charge
contribution, until the  entrance to the neutralized section
at z=310 cm.  The beam propagates assuming full
neutralization through the final focusing solenoid (549 < z
< 559 cm) to the focal  plane (z= 572 cm).

Table 1 compares the final fluence E for the numerical
calculation of the envelope; LSP; and analytic model (eq.
1). The first row (a) corresponds to experiments without a
final  focusing solenoid.  The second and third rows
correspond to beamlines using a new NDCX induction
bunching module, the final focusing solenoid (Bsol = 8
Tesla) and two beamline configurations: (b) with the
present drift compression length (L=144 cm), and (c) with
twice the drift  compression length (L=288 cm) as the
present setup. The two cases (b) and (c) show the effect of
using a bunching module with a shorter bunch length (and
relatively large tilt) with short drift length (since L≈lb/Δ)
versus using a larger bunch length and smaller tilt (and

large drift length). This approximately keeps the "Volt-
seconds" (roughly proportional to Δ lb) of the bunching
module constant, which is constrained by the finite size of
the induction core. As can be seen from the table the
simulation yields somewhat smaller values of E, than the
envelope results or analytic results, possibly due to
imperfect neutralization, or effects of fringe fields, but the
analytic calculation demonstrates the trends and scalings
that can be useful for quick design estimates.

CONCLUSION
We have estimated the energy fluence in a beam
undergoing neutralized drift compression and neutralized
solenoidal final focus, (eq. 1) and have compared it to
envelope and particle in cell simulations. We find that the
estimate is useful for understanding the general scaling of
fluence on beam and accelerator parameters and for
estimating system performance when alternative
experiments are being considered.
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